In this ticket, it is stated that the feature is just removed with any replacement.
https://github.com/nest/nest-simulator/issues/525Thus, in nest3 there is only
ResetKernel().
This means that you have to rebuild the network for any application where you do multiple simulations with different input or parameter changes. I am using nest3 for reinforcement learning and in each training episode, I have to extract all the weights and save them, reset the kernel, reconstruct the net, then load all the weights. This adds a lot of overhead in performance and bloats my code. I basically have another front-end storing the net and talking to the nest back-end.
Therefore, the update to nest3 is a downgrade for many applications. I don’t have a solution for this issue, but I want to spark some discussion as I learned that I am not the only nest user to stumble into this issue.
STDP Performance boost by manual computation in pythonIn the paper "Demonstrating Advantages of Neuromorphic Computation: A Pilot Study“ by Wunderlich et al. (https://www.frontiersin.org/articles/10.3389/fnins.2019.00260/full) some performance improvement on STDP was reported.
"The synaptic weight updates in each iteration were restricted to those synapses which transmitted spikes, i.e., the synapses from the active input unit to all output units (32 out of the 1,024 synapses), as the correlation a+ of all other synapses is zero in a perfect simulation without fixed-pattern noise. This has the effect of reducing the overall time required to simulate one iteration[…]“
Kind regards,
Benedikt S. Vogler
--
Benedikt S. Vogler
benedikt.s.vogler@tum.de
Student M.Sc. Robotics, Cognition, Intelligence